CPS710 -5-5

TRAVERSING AST'S

VISITORS

e Once AST is built, rest of translator will want to traverse the tree to perform
various operations on it:

— Print the tree

— Perform semantic analysis
— Interpreter will evaluate AST
— Compilers will generate code from AST

e Approaches:

Approach Explanation Example

Procedural | Recursive function traverses tree Evaluate(ast)

Pure OOP Each AST class has its own method for each | ast.Evaluate()
kind of operation

Visitor OOP | Visitors are objects which traverse ASTs; Evaluate i1s a
ASTs accept visits from visitors. visitor

VISITOR APPROACH

e The AST node classes do not need different methods for each kind of visitation.

¢ Instead, each AST node simply contains a method to accept the visit of any visitor.

e Visitor knows what to do when it visits each type of AST node.

e Example: AST nodes will not have an evaluate method. Instead, the visitor will
know how to evaluate each type of AST node.

CPS710 -5-5 VISITORS

JJTREE VISITOR SUPPORT

e Assuming that
— the jjtree file is called HL.jjt
— In HL jjt, VISITOR=t rue;

e SimpleNode and all the AST classes will then include the following method:

/** Accept the visitor. **/
public Object jjtAccept (HLVisitor visitor, Object data) {
return visitor.visit (this, data);

}

e A new interface HLVisitor.java will be created:

public interface HLVisitor

{
public Object visit (SimpleNode node, Object data);
public Object visit (ASTEOFReached node, Object data);
public Object visit (ASTbody node, Object data);
public Object visit (ASTclause node, Object data);
// etc..

}

WORKING WITH JJTREE VISITORS

e To write a visitor, define a new class that implements HL Visitor & write code for
each of the methods defined in the interface. E.g.

public class Eval implements HLVisitor

e To use a visitor, instantiate the class and ask the AST to accept the instantiation's
visit.

private static HL parser;

SimpleNode tree;

Eval evaluator = new Eval({();

tree = parser.start();

System.out.println (tree.jjtAccept (evaluator,null));

