
CPS710 – 5-5 VISITORS 1

TRAVERSING AST'S

 Once AST is built, rest of translator will want to traverse the tree to perform

various operations on it:

 Print the tree

 Perform semantic analysis

 Interpreter will evaluate AST

 Compilers will generate code from AST

 Approaches:

Approach Explanation Example

Procedural Recursive function traverses tree Evaluate(ast)

Pure OOP Each AST class has its own method for each

kind of operation

ast.Evaluate()

Visitor OOP Visitors are objects which traverse ASTs;

ASTs accept visits from visitors.

Evaluate is a

visitor

VISITOR APPROACH

 The AST node classes do not need different methods for each kind of visitation.

 Instead, each AST node simply contains a method to accept the visit of any visitor.

 Visitor knows what to do when it visits each type of AST node.

 Example: AST nodes will not have an evaluate method. Instead, the visitor will

know how to evaluate each type of AST node.

CPS710 – 5-5 VISITORS 2

JJTREE VISITOR SUPPORT

 Assuming that

 the jjtree file is called HL.jjt

 In HL.jjt, VISITOR=true;

 SimpleNode and all the AST classes will then include the following method:

 /** Accept the visitor. **/

 public Object jjtAccept(HLVisitor visitor, Object data) {

 return visitor.visit(this, data);

 }

 A new interface HLVisitor.java will be created:

public interface HLVisitor

{

 public Object visit(SimpleNode node, Object data);

 public Object visit(ASTEOFReached node, Object data);

 public Object visit(ASTbody node, Object data);

 public Object visit(ASTclause node, Object data);

 // etc…

}

WORKING WITH JJTREE VISITORS

 To write a visitor, define a new class that implements HLVisitor & write code for

each of the methods defined in the interface. E.g.

public class Eval implements HLVisitor

 To use a visitor, instantiate the class and ask the AST to accept the instantiation's

visit.

private static HL parser;

SimpleNode tree;

Eval evaluator = new Eval();

tree = parser.start();

System.out.println(tree.jjtAccept(evaluator,null));

