CPS710 -6-1 SYMBOL TABLES 1

Introduction

e Compilers and interpreters contain symbol tables: tables which store information about
all the identifiers used in a program.

e Purpose:
— To verify that identifiers are properly used
— Compilers: to translate identifier references to references to structures in target
language.
— Interpreters: to find value

Requirements

e Store information about each identifier:
— What it is: Name, data type, size, structure (primitive or compound)
— How it fits in the program: scope
— Where to get the value: binding or binding instructions
— Other: additional information (for compound variables or functions)

e Support multiple uses of same name

e Support operations:
— Add new identifier
— Update existing identifier's information
— Check usage of identifier
— Delete identifier?

— Symbol tables are big tables of data, i.c. small databases
- Many possible data structures

Interaction of Symbol table with Translator Components

e Lifetime of symbol table:
— Interpreters: whole session
— Compilers:
o  Transient component used during compilation used to translate references
to relative locations.
This component could be kept for debugging or profiling purposes.
o  Permanent component also stored with compiled code keeps information
about publicly accessible identifiers to resolve external references.
o  For OOP languages, references to methods are often resolved at run time.

O



CPS710 -6-1 SYMBOL TABLES

Interaction of Symbol Table with Interpreters

INTERPRETATION PHASES

Source
Program

Lexical Analysis (Scanning)

Stream
of Tokens

Syntax Analysis (Parsing)

AST

Semantic Analysis

Modified
AST
Symbol
: Error
Table Evaluation - K Y
Management Management
Scanning

As it encounters identifiers, scanner creates a Global name table (= spelling table =
identifier table = lexeme table) used to convert scanned identifier names into numeric
references:

e Every new name is assigned a number

e Name-number association entered into table.

Later Stages

e Dynamic scoping: scope and type resolved and verified during evaluation

e Static scoping: parser builds a scope stack containing list of identifiers defined in each
scope and uses it to associate each identifier encountered with a reference to its
definition.



