
CPS710 – 6-1 SYMBOL TABLES 1

Introduction

 Compilers and interpreters contain symbol tables: tables which store information about

all the identifiers used in a program.

 Purpose:

 To verify that identifiers are properly used

 Compilers: to translate identifier references to references to structures in target

language.

 Interpreters: to find value

Requirements

 Store information about each identifier:

 What it is: Name, data type, size, structure (primitive or compound)

 How it fits in the program: scope

 Where to get the value: binding or binding instructions

 Other: additional information (for compound variables or functions)

 Support multiple uses of same name

 Support operations:

 Add new identifier

 Update existing identifier's information

 Check usage of identifier

 Delete identifier?

 Symbol tables are big tables of data, i.e. small databases

 Many possible data structures

Interaction of Symbol table with Translator Components

 Lifetime of symbol table:

 Interpreters: whole session

 Compilers:

o Transient component used during compilation used to translate references

to relative locations.

o This component could be kept for debugging or profiling purposes.

o Permanent component also stored with compiled code keeps information

about publicly accessible identifiers to resolve external references.

o For OOP languages, references to methods are often resolved at run time.

CPS710 – 6-1 SYMBOL TABLES 2

Interaction of Symbol Table with Interpreters

INTERPRETATION PHASES

Lexical Analysis (Scanning)

Stream

of Tokens

Syntax Analysis (Parsing)

Source

Program

AST

Semantic Analysis

Modified

AST

Evaluation

Result

Symbol

Table

Management

Error

Management

Scanning

As it encounters identifiers, scanner creates a Global name table (= spelling table =

identifier table = lexeme table) used to convert scanned identifier names into numeric

references:

 Every new name is assigned a number

 Name-number association entered into table.

Later Stages

 Dynamic scoping: scope and type resolved and verified during evaluation

 Static scoping: parser builds a scope stack containing list of identifiers defined in each

scope and uses it to associate each identifier encountered with a reference to its

definition.

