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Introduction 

 Compilers and interpreters contain symbol tables: tables which store information about 

all the identifiers used in a program. 

 Purpose: 

 To verify that identifiers are properly used 

 Compilers: to translate identifier references to references to structures in target 

language. 

 Interpreters: to find value 

Requirements 

 Store information about each identifier: 

 What it is: Name, data type, size, structure (primitive or compound) 

 How it fits in the program: scope 

 Where to get the value: binding or binding instructions 

 Other: additional information (for compound variables or functions) 

 Support multiple uses of same name 

 Support operations: 

 Add new identifier 

 Update existing identifier's information 

 Check usage of identifier 

 Delete identifier? 

 Symbol tables are big tables of data, i.e. small databases 

 Many possible data structures 

Interaction of Symbol table with Translator Components 

 Lifetime of symbol table: 

 Interpreters: whole session 

 Compilers:  

o Transient component used during compilation used to translate references 

to relative locations. 

o This component could be kept for debugging or profiling purposes. 

o Permanent component also stored with compiled code keeps information 

about publicly accessible identifiers to resolve external references. 

o For OOP languages, references to methods are often resolved at run time. 
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Interaction of Symbol Table with Interpreters 

INTERPRETATION PHASES
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Scanning 

As it encounters identifiers, scanner creates a Global name table (= spelling table = 

identifier table = lexeme table) used to convert scanned identifier names into numeric 

references: 

 Every new name is assigned a number 

 Name-number association entered into table. 

Later Stages 

 Dynamic scoping: scope and type resolved and verified during evaluation 

 Static scoping: parser builds a scope stack containing list of identifiers defined in each 

scope and uses it to associate each identifier encountered with a reference to its 

definition. 


