
CPS710 – 6-2 IDENTIFIER TABLES 1

DEFINITION

 Global name table (= spelling table = identifier table = lexeme table) used to

convert scanned identifier names into numeric references.

 Token stores reference to number in addition to or instead of string.

 ASTIdentifier structure will only be interested in number.

 Purpose:

 Easily identify references to same identifier.

 Minimize string comparisons to once throughout entire process.

COST

 Cost matters for interpreters

 Cost calculation:

Assume table of n records, m enquiries:

i.e. there are n names in program and they are used m times altogether

i.e. n additions, m enquiries m>n

 S = average cost of 1 search

 A = cost of 1 addition

 Cost = n A + n S + m S

 (Each addition involves 1 search for duplicates.

POSSIBLE ORGANISATIONS

Linear List in Chronological Order (default)

 Keep an table (array) of records, with pointer to last

 Add to the end

 Search from the end to beginning

 Cost

 S = n/2 records when record is found

 S = n when record is not found (for additions)

 A = constant C

 Cost = nC + n2 + m.n/2 = O(n (n+m)) = O(n.m)

CPS710 – 6-2 IDENTIFIER TABLES 2

Self-Organising List

 In addition to linear list, provide linked list of table indices which moves last used

index to front of list

 Costs are same order, but

 Additional moving costs (constant with linked lists)

 Real programs cluster usage of identifiers => real search savings

Binary Search Tree in Alphabetical order

 In addition to linear list, provide BST of table indices organizing names in

alphabetical order

 Cost

 S = log n

 A = log n

 Cost = O((n+m) log n) = O(m log n)

 In practise, useful if n>50

Hash Table

 In addition to linear list, provide hash table to organize indices (hash on string)

 Cost: Assume k = size of hash table

 S = O(n/k)

 A = O(n/k)

 Cost = O((n+m)n/k) = O(m.n/k)

 To reduce Cost, make k big (around O(m)=100 is good)

