
CPS710 – 6-2 IDENTIFIER TABLES 1

DEFINITION

 Global name table (= spelling table = identifier table = lexeme table) used to

convert scanned identifier names into numeric references.

 Token stores reference to number in addition to or instead of string.

 ASTIdentifier structure will only be interested in number.

 Purpose:

 Easily identify references to same identifier.

 Minimize string comparisons to once throughout entire process.

COST

 Cost matters for interpreters

 Cost calculation:

Assume table of n records, m enquiries:

i.e. there are n names in program and they are used m times altogether

i.e. n additions, m enquiries m>n

 S = average cost of 1 search

 A = cost of 1 addition

 Cost = n A + n S + m S

 (Each addition involves 1 search for duplicates.

POSSIBLE ORGANISATIONS

Linear List in Chronological Order (default)

 Keep an table (array) of records, with pointer to last

 Add to the end

 Search from the end to beginning

 Cost

 S = n/2 records when record is found

 S = n when record is not found (for additions)

 A = constant C

 Cost = nC + n2 + m.n/2 = O(n (n+m)) = O(n.m)

CPS710 – 6-2 IDENTIFIER TABLES 2

Self-Organising List

 In addition to linear list, provide linked list of table indices which moves last used

index to front of list

 Costs are same order, but

 Additional moving costs (constant with linked lists)

 Real programs cluster usage of identifiers => real search savings

Binary Search Tree in Alphabetical order

 In addition to linear list, provide BST of table indices organizing names in

alphabetical order

 Cost

 S = log n

 A = log n

 Cost = O((n+m) log n) = O(m log n)

 In practise, useful if n>50

Hash Table

 In addition to linear list, provide hash table to organize indices (hash on string)

 Cost: Assume k = size of hash table

 S = O(n/k)

 A = O(n/k)

 Cost = O((n+m)n/k) = O(m.n/k)

 To reduce Cost, make k big (around O(m)=100 is good)

