
CPS710 – 6-4 STATIC SCOPING 1

DATA STRUCTURES

 Each scope will have its own static symbol table which describes all the identifiers

that are defined in the scope. Each identifier has an entry in the table:

 All entries need: index into identifier table, type, and an indication of the

complexity of the object that the identifier will representing.

 Complex structure (e.g. arrays, structs) will need more information.

 Functions also need fields for list of parameters, scope (the function’s symbol

table), and body to evaluate

 The parser keeps a scope stack which stores active scopes during parsing.

 Each entry in the scope stack is a references to the symbol table of an active

scope (i.e. a scope that is in the process of being parsed)

 Bottom entry is static scope.

PARSING

 When a function declaration is being parsed:

 an entry for that variable is created in the symbol table topmost in the scope

stack (because the function is local to current scope)

 A new symbol table for that function is created and a reference to it stored in the

scope field of the function’s entry. This symbol table is the function’s scope.

 A reference to this scope is also pushed on the scope stack

 Parameter declarations are parsed:

 For each new parameter, an entry is added to the function’s scope.

 A list of parameters is kept in the symbol table entry for the function being

parsed.

 The function’s body in parsed: see other bullets for explanations of how parser

deals with identifiers it encounters.

 When the body has been parsed, add reference to body AST in entry for function

in symbol table. Note that ASTs for declarations of locally defined identifiers

will have been removed from the AST of the function’s body because they have

been translated into symbol table actions and are not needed anymore.

 When a variable declaration is parsed, an entry for that variable is created in the

symbol table topmost in the scope stack, i.e. the scope being currently parsed.

CPS710 – 6-4 STATIC SCOPING 2

 For each identifier encountered not in a declaration, search scope stack top to

bottom for first reference to that identifer. Add that reference (scope + index of

entry in scope) to identifier entry in AST.

EVALUATION OF FUNCTION CALLS

 Note that because most languages allow recursive functions, at run time there can

be multiple instances of the same function parameters and local variable: one set

each time the function is called.

 Need activation stack: each record keeps

 Reference to active scope

 Symbol table for the variable (non-function) entries of that scope’s symbol table.

scope value

value

 Static scope symbol table always on activation stack

 Evaluating fn_call

Alternate Implementation

 Replace global activation stack by multiple activation stacks, one for each symbol

table entry.

 Upon entry, push values of parameters on parameter activation stacks, and push

a placeholder on stacks of local variables

 Before exit, pop top item off all the stacks of all the variables in the scope’s

symbol table.

