
CPS710-2-4 REGULAR EXPRESSIONS 1 of 3

FORMAL LANGUAGES

Alphabets and Strings

• An alphabet ∑ is a finite set of characters (or symbols).

• A word, or sequence, or string over ∑ is any group of 0 or more consecutive

characters of ∑.

• The length of a word is the number of characters in the word.

• The null string is the string of length 0. It is denoted ε or λ.

• A string of length n is really an ordered n-tuple of characters written without
parentheses or commas.

• Given two strings x and y over ∑, the concatenation of x and y is the string
xy obtained by putting all the characters of y right after x.

Languages over an alphabet

Let ∑ be an alphabet. A formal language over ∑ is a set of strings over ∑.

• ∅ is the empty language (over ∑)

• = {all strings over ∑ that have length n} where n∈n∑

• = the positive closure of ∑ ={all strings over ∑ that have length ≥ 1} +∑

• = the Kleene closure of ∑ = {all strings over ∑} *∑

Operations on Languages

Let ∑ be an alphabet. Let L and L′ be two languages defined over ∑.

The following operations define new languages over ∑:

• The concatenation of L and L′, denoted LL′, is LL′ = {xy | x∈L ∧ y∈L′}

• The union of L and L′, denoted L∪L′, is L∪L′ = {x | x∈L ∨ y∈L′}

• The Kleene closure of L, denoted L*, is L*={ x | x is a concatenation of any
finite number of strings in L}. Note that ε∈L*.

CPS710-2-4 REGULAR EXPRESSIONS 2 of 3

REGULAR EXPRESSIONS

Definition

Let ∑ be an alphabet. The following are regular expressions (r.e.) over ∑:

I. BASE: ε and each individual symbol of ∑ are regular expressions.

II. RECURSION: if r and s are regular expressions over ∑, then the following

are also regular expressions over ∑:
- (rs) the concatenation of r and s
- (r | s) r or s
- (r*) the Kleene closure of r

III. RESTRICTION: The only regular expressions over ∑ are the ones defined
by I and II above.

Order of Precedence of Regular Expression Operations

• The order of precedence of r.e. operators are, from highest to lowest:

• Highest: () * concatenation | : lowest
Languages Defined by Regular Expressions

Let ∑ be an alphabet. Define a function L as follows:

{all r.e.'s over } {all languages over
language defined by

}:
() = th re

L
r L r
⎡
⎢
⎢⎢⎣

Σ → Σ

I. L(ε) = {ε}, ∀a∈∑ L(a)={a}

II. RECURSION: If L(r) and L(s) are the languages defined by the regular
expressions r and s over ∑, then
- L(rs) = L(r)L(s)
- L(r|s) = L(r) ∪ L(s)
- L(r*) = (L(r))*

Variations

Some definitions of regular expressions and regular languages define ∅ to be a

r.e. with L(∅)=∅

CPS710-2-4 REGULAR EXPRESSIONS 3 of 3

PROPERTIES OF REGULAR EXPRESSIONS

Regular expressions can be simplified by applying the following properties:
For any regular expressions r, s, t,

Axiom Description
r | s = s | r | is commutative
r | (s | t) = (r | s) | t = r | s| t | is associative
(rs)t = r(st) = rst Concatenation is associative
r(s|t) = rs | rt and (s|t)r = sr | tr Concatenation is distributive over |
rε = εr = r ε is the identity element for concatenation
r** = r* * is idempotent
r* = (r|ε)*

NOTATIONAL SHORTHANDS

Here are some frequent constructs which have their own notation:

• (r)+ means one or more instances of r.
 L((r)+) = (L(r))+

• (r)? means 0 or 1 instances of r. i.e. (r)? = r|ε

 L((r)?) = (L(r|ε)) = L(r) ∪ L(ε) = L(r) ∪ {ε}

• Character classes:
 [abc] = a|b|c
 [a-z] = a|b|…|z

REGULAR DEFINITIONS

Regular expressions can be broken down into regular definitions: sequences of
expressions of the form

d1 r1
 …

dn rn

where each di is a distinct name and

ri is a regular expression over symbols in ∑ ∪ {d1, d2, … di-1}

	FORMAL LANGUAGES
	Alphabets and Strings
	An alphabet (is a finite set of characters (or symbols).
	A word, or sequence, or string over (is any group of 0 or more consecutive characters of (.
	The length of a word is the number of characters in the word
	The null string is the string of length 0. It is denoted (or (.
	A string of length n is really an ordered n-tuple of charact
	Given two strings x and y over (, the concatenation of x and y is the string xy obtained by putting all the characters of y right after x.

	Languages over an alphabet
	Let (be an alphabet. A formal language over (is a set of strings over (.
	(is the empty language (over ()
	= {all strings over (that have length n} where n((
	= the positive closure of (={all strings over (that have length (1}
	= the Kleene closure of (= {all strings over (}

	Operations on Languages
	Let (be an alphabet. Let L and L(be two languages defined over (.
	The following operations define new languages over (:
	The concatenation of L and L(, denoted LL(, is LL(= {xy | x(L (y(L(}
	The union of L and L(, denoted L(L(, is L(L(= {x | x(L (y(L(}
	The Kleene closure of L, denoted L*, is L*={ x | x is a concatenation of any finite number of strings in L}. Note that ((L*.

	REGULAR EXPRESSIONS
	Definition
	Let (be an alphabet. The following are regular expressions (r.e.) over (:
	BASE: (and each individual symbol of (are regular expressions.
	RECURSION: if r and s are regular expressions over (, then the following are also regular expressions over (:
	(rs) the concatenation of r and s
	(r | s) r or s
	(r*) the Kleene closure of r

	RESTRICTION: The only regular expressions over (are the ones defined by I and II above.

	Order of Precedence of Regular Expression Operations
	The order of precedence of r.e. operators are, from highest
	Highest: () * concatenation | : lowest

	Languages Defined by Regular Expressions
	Let (be an alphabet. Define a function L as follows:
	L(() = {(}, (a((L(a)={a}
	RECURSION: If L(r) and L(s) are the languages defined by the regular expressions r and s over (, then
	L(rs) = L(r)L(s)
	L(r|s) = L(r) (L(s)
	L(r*) = (L(r))*

	Variations
	Some definitions of regular expressions and regular languages define (to be a r.e. with L(()=(

	PROPERTIES OF REGULAR EXPRESSIONS
	Regular expressions can be simplified by applying the follow
	For any regular expressions r, s, t,

	NOTATIONAL SHORTHANDS
	Here are some frequent constructs which have their own notat
	(r)+ means one or more instances of r.
	L((r)+) = (L(r))+
	(r)? means 0 or 1 instances of r. i.e. (r)? = r|(
	L((r)?) = (L(r|()) = L(r) (L(() = L(r) ({(}
	Character classes:
	[abc] = a|b|c
	[a-z] = a|b|…|z

	REGULAR DEFINITIONS
	Regular expressions can be broken down into regular definiti
	d1 (r1
	dn (rn

	where each di is a distinct name and
	ri is a regular expression over symbols i�

