FORMAL LANGUAGES

Alphabets and Strings

- An alphabet \sum is a finite set of characters (or symbols).
- A word, or sequence, or string over ∑ is any group of 0 or more consecutive characters of ∑.
- The length of a word is the number of characters in the word.
- The null string is the string of length 0. It is denoted ε or λ .
- A string of length n is really an ordered n-tuple of characters written without parentheses or commas.
- Given two strings x and y over ∑, the concatenation of x and y is the string xy obtained by putting all the characters of y right after x.

Languages over an alphabet

Let \sum be an alphabet. A formal language over \sum is a set of strings over \sum .

- \emptyset is the empty language (over Σ)
- $\sum^{n} = \{ \text{all strings over } \sum \text{ that have length } n \} \text{ where } n \in \mathbb{N} \}$
- Σ^+ = the positive closure of $\Sigma = \{ all strings over \Sigma that have length \ge 1 \}$
- \sum^* = the Kleene closure of \sum = {all strings over \sum }

Operations on Languages

Let \sum be an alphabet. Let L and L' be two languages defined over \sum .

The following operations define new languages over \sum :

- The concatenation of L and L', denoted LL', is $LL' = \{xy \mid x \in L \land y \in L'\}$
- The union of L and L', denoted $L \cup L'$, is $L \cup L' = \{x \mid x \in L \lor y \in L'\}$
- The Kleene closure of L, denoted L^{*}, is L^{*}={ x | x is a concatenation of any finite number of strings in L}. Note that ε∈L^{*}.

REGULAR EXPRESSIONS

Definition

Let \sum be an alphabet. The following are regular expressions (r.e.) over \sum :

- I. BASE: ε and each individual symbol of \sum are regular expressions.
- II. RECURSION: if r and s are regular expressions over \sum , then the following

are also regular expressions over \sum :

- (rs) the concatenation of r and s
- $(\mathbf{r} | \mathbf{s})$ rors
- (\mathbf{r}^*) the Kleene closure of r

III.RESTRICTION: The only regular expressions over \sum are the ones defined by I and II above.

Order of Precedence of Regular Expression Operations

- The order of precedence of r.e. operators are, from highest to lowest:
- Highest: () * concatenation | : lowest

Languages Defined by Regular Expressions

Let \sum be an alphabet. Define a function L as follows:

$$L: \begin{cases} \{ \text{all r.e.'s over } \Sigma \} \rightarrow \{ \text{all languages over } \Sigma \} \\ r \qquad \mapsto \quad L(r) = \text{the language defined by } r \end{cases}$$

- I. $L(\varepsilon) = \{\varepsilon\}, \forall a \in \sum L(a) = \{a\}$
- II. RECURSION: If L(r) and L(s) are the languages defined by the regular expressions r and s over \sum , then
 - L(rs) = L(r)L(s)
 - $L(r|s) = L(r) \cup L(s)$
 - $L(r^*) = (L(r))^*$

Variations

Some definitions of regular expressions and regular languages define \emptyset to be a r.e. with L(\emptyset)= \emptyset

CPS710-2-4

PROPERTIES OF REGULAR EXPRESSIONS

Regular expressions can be simplified by applying the following properties:

For any regular expressions r, s, t,

Axiom	Description
$r \mid s = s \mid r$	is commutative
r (s t) = (r s) t = r s t	is associative
(rs)t = r(st) = rst	Concatenation is associative
r(s t) = rs rt and (s t)r = sr tr	Concatenation is distributive over
$r\varepsilon = \varepsilon r = r$	$\boldsymbol{\epsilon}$ is the identity element for concatenation
r** = r*	* is idempotent
$\mathbf{r}^* = (\mathbf{r} \mathbf{\epsilon})^*$	

NOTATIONAL SHORTHANDS

Here are some frequent constructs which have their own notation:

- (r)⁺ means one or more instances of r.
 L((r)+) = (L(r))+
- (r)? means 0 or 1 instances of r. i.e. (r)? = $r|\epsilon$

 $L((\mathbf{r})?) = (L(\mathbf{r}|\varepsilon)) = L(\mathbf{r}) \cup L(\varepsilon) = L(\mathbf{r}) \cup \{\varepsilon\}$

• Character classes:

[abc] = a|b|c[a-z] = a|b|...|z

REGULAR DEFINITIONS

Regular expressions can be broken down into regular definitions: sequences of expressions of the form

 $d_1 \rightarrow r_1$... $d_n \rightarrow r_n$

where each d_i is a distinct name and

 r_i is a regular expression over symbols in $\sum \cup \{d_1, d_2, \ldots \, d_{i\text{-}1}\}$