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FORMAL LANGUAGES 

Alphabets and Strings 

• An alphabet ∑ is a finite set of characters (or symbols). 

• A word, or sequence, or string over ∑ is any group of 0 or more consecutive 

characters of  ∑. 

• The length of a word is the number of characters in the word. 

• The null string is the string of length 0.  It is denoted ε or λ. 

• A string of length n is really an ordered n-tuple of characters written without 
parentheses or commas. 

• Given two strings x and y over ∑, the concatenation of x and y is the string 
xy obtained by putting all the characters of y right after x. 

Languages over an alphabet 

Let ∑ be an alphabet.  A formal language over ∑ is a set of strings over ∑. 

• ∅ is the empty language (over ∑) 

•  = {all strings over ∑ that have length n} where n∈n∑  

•  = the positive closure of ∑ ={all strings over ∑ that have length ≥ 1} +∑

•  = the Kleene closure of ∑ = {all strings over ∑} *∑

Operations on Languages 

Let ∑ be an alphabet.  Let L and L′ be two languages defined over ∑. 

The following operations define new languages over ∑: 

• The concatenation of L and L′, denoted LL′, is LL′ = {xy | x∈L ∧ y∈L′} 

• The union of L and L′, denoted L∪L′, is L∪L′ = {x | x∈L ∨ y∈L′} 

• The Kleene closure of L, denoted L*, is L*={ x | x is a concatenation of any 
finite number of strings in L}.  Note that ε∈L*. 
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REGULAR EXPRESSIONS 

Definition 

Let ∑ be an alphabet.  The following are regular expressions (r.e.) over ∑: 

I. BASE: ε and each individual symbol of ∑ are regular expressions. 

II. RECURSION: if r and s are regular expressions over ∑, then the following 

are also regular expressions over ∑: 
- (rs)  the concatenation of r and s 
- (r | s)  r or s 
- (r*)  the Kleene closure of r 

III. RESTRICTION: The only regular expressions over ∑ are the ones defined 
by I and II above. 

Order of Precedence of Regular Expression Operations 

• The order of precedence of r.e. operators are, from highest to lowest: 

• Highest: () * concatenation | : lowest 
Languages Defined by Regular Expressions 

Let ∑ be an alphabet.  Define a function L  as follows: 

{all r.e.'s over } {all languages over 
language defined by 

}:
( ) = th re 

L
r L r
⎡
⎢
⎢⎢⎣

Σ → Σ  

I. L(ε) = {ε}, ∀a∈∑ L(a)={a} 

II. RECURSION: If L(r) and L(s) are the languages defined by the regular 
expressions r and s over ∑, then 
- L(rs) = L(r)L(s) 
- L(r|s) = L(r) ∪ L(s) 
- L(r*) = (L(r))* 

Variations 

Some definitions of regular expressions and regular languages define ∅ to be a 

r.e. with L(∅)=∅ 



CPS710-2-4 REGULAR EXPRESSIONS  3 of 3 
 
 
PROPERTIES OF REGULAR EXPRESSIONS 

Regular expressions can be simplified by applying the following properties:   
For any regular expressions r, s, t, 
 
Axiom Description 
r | s = s | r | is commutative 
r | (s | t) = (r | s) | t = r | s| t | is associative 
(rs)t = r(st) = rst Concatenation is associative 
r(s|t) = rs | rt  and (s|t)r = sr | tr Concatenation is distributive over | 
rε = εr = r ε is the identity element for concatenation 
r** = r* * is idempotent 
r* = (r|ε)*  

NOTATIONAL SHORTHANDS 

Here are some frequent constructs which have their own notation:   

• (r)+ means one or more instances of r. 
 L((r)+) = (L(r))+ 

• (r)? means 0 or 1 instances of r.  i.e. (r)? = r|ε 

 L((r)?) = (L(r|ε)) = L(r) ∪ L(ε) = L(r) ∪ {ε} 

• Character classes: 
 [abc] = a|b|c 
 [a-z] = a|b|…|z 

REGULAR DEFINITIONS 

Regular expressions can be broken down into regular definitions: sequences of 
expressions of the form 

d1 r1
 … 

dn rn
 
where each di is a distinct name and 

ri is a regular expression over symbols in ∑ ∪ {d1, d2, … di-1} 
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