FORMAL LANGUAGES

Alphabets and Strings

- An alphabet \sum is a finite set of characters (or symbols).
- A word, or sequence, or string over \sum is any group of 0 or more consecutive characters of \sum.
- The length of a word is the number of characters in the word.
- The null string is the string of length 0 . It is denoted ε or λ.
- A string of length n is really an ordered n-tuple of characters written without parentheses or commas.
- Given two strings x and y over \sum, the concatenation of x and y is the string xy obtained by putting all the characters of y right after x.
Languages over an alphabet
Let \sum be an alphabet. A formal language over \sum is a set of strings over \sum.
- $\quad \varnothing$ is the empty language (over \sum)
- $\sum^{n}=\left\{\right.$ all strings over \sum that have length $\left.n\right\}$ where $n \in \mathbb{N}$
- $\Sigma^{+}=$the positive closure of $\sum=\left\{\right.$ all strings over \sum that have length $\left.\geq 1\right\}$
- $\sum^{*}=$ the Kleene closure of $\sum=\left\{\right.$ all strings over $\left.\sum\right\}$

Operations on Languages

Let \sum be an alphabet. Let L and L^{\prime} be two languages defined over \sum.
The following operations define new languages over \sum :

- The concatenation of L and L^{\prime}, denoted $L L^{\prime}$, is $L L^{\prime}=\left\{x y \mid x \in L \wedge y \in L^{\prime}\right\}$
- The union of L and L^{\prime}, denoted $L \cup L^{\prime}$, is $L \cup L^{\prime}=\left\{x \mid x \in L \vee y \in L^{\prime}\right\}$
- The Kleene closure of L, denoted L^{*}, is $L^{*}=\{x \mid x$ is a concatenation of any finite number of strings in $L\}$. Note that $\varepsilon \in L^{*}$.

REGULAR EXPRESSIONS

Definition

Let \sum be an alphabet. The following are regular expressions (r.e.) over \sum :
I. BASE: ε and each individual symbol of \sum are regular expressions.
II. RECURSION: if r and s are regular expressions over \sum, then the following are also regular expressions over \sum :

- (rs) the concatenation of r and s
- (r|s) rors
- (r) the Kleene closure of r
III.RESTRICTION: The only regular expressions over \sum are the ones defined by I and II above.
Order of Precedence of Regular Expression Operations
- The order of precedence of r.e. operators are, from highest to lowest:
- Highest: () * concatenation | lowest

Languages Defined by Regular Expressions

Let \sum be an alphabet. Define a function L as follows:
$L:\left\{\begin{array}{lll}\{\text { all r.e.'s over } \Sigma\} & \rightarrow & \text { all languages over } \Sigma\} \\ r & \mapsto & L(r)=\text { the language defined by r }\end{array}\right.$
I. $\mathrm{L}(\varepsilon)=\{\varepsilon\}, \forall \mathrm{a} \in \sum \mathrm{L}(\mathrm{a})=\{\mathrm{a}\}$
II. RECURSION: If L(r) and $\mathrm{L}(\mathrm{s})$ are the languages defined by the regular expressions r and s over \sum, then

- $\mathrm{L}(\mathrm{rs})=\mathrm{L}(\mathrm{r}) \mathrm{L}(\mathrm{s})$
- $\mathrm{L}(\mathrm{r} \mid \mathrm{s})=\mathrm{L}(\mathrm{r}) \cup \mathrm{L}(\mathrm{s})$
- $\quad \mathrm{L}\left(\mathrm{r}^{*}\right)=(\mathrm{L}(\mathrm{r}))^{*}$

Variations

Some definitions of regular expressions and regular languages define \varnothing to be a r.e. with $L(\varnothing)=\varnothing$

PROPERTIES OF REGULAR EXPRESSIONS

Regular expressions can be simplified by applying the following properties:
For any regular expressions r, s, t,

Axiom	Description
$r\|s=s\| r$	\mid is commutative
$r\|(s \mid t)=(r \mid s)\| t=r\|s\| t$	\mid is associative
$(r s) t=r(s t)=r s t$	Concatenation is associative
$r(s \mid t)=r s \mid r t$ and $(s \mid t) r=s r \mid t r$	Concatenation is distributive over \mid
$r \varepsilon=\varepsilon r=r$	ε is the identity element for concatenation
$r^{* *}=r^{*}$	$*$ is idempotent
$r^{*}=(r \mid \varepsilon)^{*}$	

NOTATIONAL SHORTHANDS

Here are some frequent constructs which have their own notation:

- $(\mathrm{r})^{+}$means one or more instances of r .

$$
\mathrm{L}\left((\mathrm{r})^{+}\right)=(\mathrm{L}(\mathrm{r}))^{+}
$$

- (r)? means 0 or 1 instances of r. i.e. (r) ? $=\mathrm{r} \mid \varepsilon$

$$
\mathrm{L}((\mathrm{r}) ?)=(\mathrm{L}(\mathrm{r} \mid \varepsilon))=\mathrm{L}(\mathrm{r}) \cup \mathrm{L}(\varepsilon)=\mathrm{L}(\mathrm{r}) \cup\{\varepsilon\}
$$

- Character classes:

$$
\begin{aligned}
& {[\mathrm{abc}]=\mathrm{a}|\mathrm{~b}| \mathrm{c}} \\
& {[\mathrm{a}-\mathrm{z}]=\mathrm{a}|\mathrm{~b}| \ldots \mid \mathrm{z}}
\end{aligned}
$$

REGULAR DEFINITIONS

Regular expressions can be broken down into regular definitions: sequences of expressions of the form

$$
\begin{aligned}
& \mathrm{d}_{1} \rightarrow \mathrm{r}_{1} \\
& \ldots \\
& \mathrm{~d}_{\mathrm{n}} \rightarrow \mathrm{r}_{\mathrm{n}}
\end{aligned}
$$

where each d_{i} is a distinct name and
r_{i} is a regular expression over symbols in $\sum \cup\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots \mathrm{~d}_{\mathrm{i}-1}\right\}$

