
CPS710 – 7-1 ERROR MANAGEMENT 1

Types of Errors

 Static errors (detected before program runs) fall into 2 categories:

 Lexical errors: detected by scanner – caused when tokens cannot be

properly scanned.

o Invalid character in program

o Badly formed token

o EOF in the middle of a token

 Syntax errors: detected by parser – caused when a program does not

follow the grammatical structure of the language

o Expect a token and get a different one

o Expect one of many non-terminals & don’t get any

o EOF in the middle of a production

 Semantic errors: detected by semantic analyser – caused when a program

does not follow the semantics of the language.

Since programmers don't care about the difference, they are often simply

all called syntax errors.

 Dynamic errors = runtime errors are detected when the program runs

 Examples: identify the type of error:

o EOF reached before the end of a string

o Wrong sequences of types in list of function call parameters

o else does not match any if

o Invalid characters in program

o Missing ";" at the end of statement

o Type errors

o Name-matching problems (e.g function f() … end g;

o float x = 0.2Eb;

o Array index out of range

o Identifier used outside of its scope

o ; used to separate function parameters instead of ,

o Division by 0

CPS710 – 7-1 ERROR MANAGEMENT 2

Components of Error Management

Error Prevention

Integrated Development Environments:

 Syntax directed editors can provide matching elements (e.g. closing ifs,

loops, functions or intermediate delimiters such as then, to, etc.)

 Editor can also perform semantic error prevention: (e.g. enforcing

function call definitions.)

Error Detection

Compiler/Interpreter will detect non-compliance & throw an exception

Error Reporting

Programmers (users) will want to know

 Where mistake happened

 What was expected

 What was found instead

 Why this is a mistake

 How it can be fixed

 Optionally: how program recovered from error.

Error Recovery

1) Compilers: when static errors are detected

 Try to recover in order to detect as many errors as possible

 Stop after a fixed number of errors

 Because: error recovery could introduce new phantom errors

which are not necessarily in the original program.

 Do not generate code

2) Interpreters: consist of a parse-eval loop

 Evaluation errors: stop evaluation and parse next structure

 Parsing errors: try to recover to continue parsing

 Must be able to detect where to restart, i.e. what should be

thrown out

3) Integrated Development Environments:

 Propose solutions to user and have them confirm change.

 Debuggers can also support user-led investigation of and recovery from

run-time errors by letting users step through program and try possible

changes.

CPS710 – 7-1 ERROR MANAGEMENT 3

Parsing Error Recovery Strategies:

 Purpose: recover enough to be able to continue detecting more errors

without introducing more errors in the process.

 All strategies are heuristics: solutions are not perfect, and not guaranteed to

be correct but usually produce reasonable results.

 Strategy depends on type of error & where it occurs in the grammar.

 Shallow error recoveries deal with input stream of tokens only without

touching production stack

 Deep error recoveries also pop production stack.

Shallow error recovery strategies:

 Obvious typos: Replace found token by expected token

 E.g. f(a , b ; c) – replace by ,

Note: token not really replaced. Instead alternate production is listed as

acceptable but tagged as an error.

 Missing token: Insert missing token or placeholder

 E.g. if (condition) ...

 E.g. a = a + b

Note: token not really inserted. Instead pop token from production stack.

(it is considered a shallow recovery because it can be thought of as working

with the stream of tokens)

 Panic Mode: Throw out all tokens until a good one is found from a set of

synchronizing tokens.

 E.g. things go wrong in the middle of parsing RHS of an assignment:

o ASSIGN identifier = SUM ;

o SUM identifier SUMMAND

o SUMMAND + identifier SUMMAND |

 Parse a = b*c*d;

 After reading b, trying to parse SUMMAND ; is next token on stack

Throw out all tokens until you reach ;

Some heuristics to pick set of synchronizing tokens for non-terminal A:

o Skip to an element of follow(A) & throw A out.

o Skip to an element of first(A) & try to reparse A

CPS710 – 7-1 ERROR MANAGEMENT 4

Deep error recovery strategies:

 Pop stack until a reasonable production is found

 E.g. Find an if even though previous statement is not finished

 throw out what you were doing & start fresh new statement.

How to find reasonable non-terminal on stack?

Find a non-terminal A s.t. token First(A)

 Combine both

 E.g. things go wrong in the middle of parsing RHS of an assignment:

identifier = RHS ;

 RHS complicated expression, gets confused & not working

 Know that there is no ; in expressions

 Pop stack until ; is on top

 Throw out tokens until reach ;

 Continue from there.

