
CPS710 – 7-1 ERROR MANAGEMENT 1

Types of Errors

 Static errors (detected before program runs) fall into 2 categories:

 Lexical errors: detected by scanner – caused when tokens cannot be

properly scanned.

o Invalid character in program

o Badly formed token

o EOF in the middle of a token

 Syntax errors: detected by parser – caused when a program does not

follow the grammatical structure of the language

o Expect a token and get a different one

o Expect one of many non-terminals & don’t get any

o EOF in the middle of a production

 Semantic errors: detected by semantic analyser – caused when a program

does not follow the semantics of the language.

Since programmers don't care about the difference, they are often simply

all called syntax errors.

 Dynamic errors = runtime errors are detected when the program runs

 Examples: identify the type of error:

o EOF reached before the end of a string 

o Wrong sequences of types in list of function call parameters 

o else does not match any if 

o Invalid characters in program 

o Missing ";" at the end of statement 

o Type errors 

o Name-matching problems (e.g function f() … end g; 

o float x = 0.2Eb; 

o Array index out of range 

o Identifier used outside of its scope 

o ; used to separate function parameters instead of , 

o Division by 0 

CPS710 – 7-1 ERROR MANAGEMENT 2

Components of Error Management

Error Prevention

Integrated Development Environments:

 Syntax directed editors can provide matching elements (e.g. closing ifs,

loops, functions or intermediate delimiters such as then, to, etc.)

 Editor can also perform semantic error prevention: (e.g. enforcing

function call definitions.)

Error Detection

Compiler/Interpreter will detect non-compliance & throw an exception

Error Reporting

Programmers (users) will want to know

 Where mistake happened

 What was expected

 What was found instead

 Why this is a mistake

 How it can be fixed

 Optionally: how program recovered from error.

Error Recovery

1) Compilers: when static errors are detected

 Try to recover in order to detect as many errors as possible

 Stop after a fixed number of errors

 Because: error recovery could introduce new phantom errors

which are not necessarily in the original program.

 Do not generate code

2) Interpreters: consist of a parse-eval loop

 Evaluation errors: stop evaluation and parse next structure

 Parsing errors: try to recover to continue parsing

 Must be able to detect where to restart, i.e. what should be

thrown out

3) Integrated Development Environments:

 Propose solutions to user and have them confirm change.

 Debuggers can also support user-led investigation of and recovery from

run-time errors by letting users step through program and try possible

changes.

CPS710 – 7-1 ERROR MANAGEMENT 3

Parsing Error Recovery Strategies:

 Purpose: recover enough to be able to continue detecting more errors

without introducing more errors in the process.

 All strategies are heuristics: solutions are not perfect, and not guaranteed to

be correct but usually produce reasonable results.

 Strategy depends on type of error & where it occurs in the grammar.

 Shallow error recoveries deal with input stream of tokens only without

touching production stack

 Deep error recoveries also pop production stack.

Shallow error recovery strategies:

 Obvious typos: Replace found token by expected token

 E.g. f(a , b ; c) – replace by ,

Note: token not really replaced. Instead alternate production is listed as

acceptable but tagged as an error.

 Missing token: Insert missing token or placeholder

 E.g. if (condition) ...

 E.g. a = a + b

Note: token not really inserted. Instead pop token from production stack.

(it is considered a shallow recovery because it can be thought of as working

with the stream of tokens)

 Panic Mode: Throw out all tokens until a good one is found from a set of

synchronizing tokens.

 E.g. things go wrong in the middle of parsing RHS of an assignment:

o ASSIGN  identifier = SUM ;

o SUM  identifier SUMMAND

o SUMMAND  + identifier SUMMAND | 

 Parse a = b*c*d;

 After reading b, trying to parse SUMMAND ; is next token on stack

Throw out all tokens until you reach ;

Some heuristics to pick set of synchronizing tokens for non-terminal A:

o Skip to an element of follow(A) & throw A out.

o Skip to an element of first(A) & try to reparse A

CPS710 – 7-1 ERROR MANAGEMENT 4

Deep error recovery strategies:

 Pop stack until a reasonable production is found

 E.g. Find an if even though previous statement is not finished

 throw out what you were doing & start fresh new statement.

How to find reasonable non-terminal on stack?

Find a non-terminal A s.t. token  First(A)

 Combine both

 E.g. things go wrong in the middle of parsing RHS of an assignment:

identifier = RHS ;

 RHS complicated expression, gets confused & not working

 Know that there is no ; in expressions

 Pop stack until ; is on top

 Throw out tokens until reach ;

 Continue from there.

